FAQ*: Snow Loads **Question**: I noticed that the snow loads have increased significantly in 7th Edition *One- and Two- Family Dwelling Code* compared to what they used to be in the 6th edition of the code per Chapter 36. Can you explain this and also provide some guidance on how rafter spans are determined and if the method is different than what was done using the 6th edition? **Answer**: The BBRS voted on December 11, 2007 to lower the range of snow loads for the *One-and Two-Family Dwelling Code to 25 - 50* psf. The range in the 6th edition is 25 to 40 psf. So some communities may see significant (25%) increases in snow loads. The BBRS is moving to adopting national codes and the snow loads that were approved reflect the loads shown in the IRC 2003. For a users of the code who wants to "prescriptively" choose a rafter for a particular snow load the methodology is similar to the 6th edition in that one may go directly to the family of tables (5802.5) and chose a rafter design based on Pg (ground snow load), span, spacing, species, and grade. The BBRS has approved a code change which allows one to use the on-line Span Calculator http://www.awc.org/calculators/span/calc to choose a rafter design. The following slides in this file: - give some background on why lower loads were approved by the BBRS - show some comparisons of rafter designs using the 6th and 7th editions ^{*} Answers to FAQs are opinions of the BBRS Staff and do not reflect official positions or code interpretations of the BBRS. ### Snow Loads 7th Proposed - 6th edition snow load range is 25 to 40 psf - 7th edition snow load range is 35 to 65 psf (+63%) - Effective January 1, 2008 7th edition range is 25 to 50 psf (+25%) - Justification - No evidence for widespread roof failures - Derived from IRC 2003 National Snow Load Map. Maximum value set at 50 psf which is consistent with CT and RI methodology, i.e. both states set P_g at 30 psf although IRC Map shows 35 (RI) and 40 (CT) psf regions. # Snow Loads 7th (P_g) vs. 6th (P_f) - For the maximum basic snow load (P_f) of 40 psf what is the maximum clear span (using both L/180 and L/240) allowed for a: - 2x8, Select Structural Grade, Doug Fir-Larch (North) - 2x8, No. 2, Hem-Fir (North) - How does this compare to the 7^{th} using $P_g = 40$ psf? ## Rafter Span Comparison Using 2x8s | Snow
Load ¹ | Species | Grade (P _b and E) | Defl | 6 th Allowable
Clear Span
(Dead Load =
10 psf) | 7 th Allowable
Clear Span ²
(Dead Load =
10 psf) | |--|---------------------------|--|-------------------|--|---| | P _f =40
or
P _g =40 | Doug Fir-Larch (North) | Select Structural (2065 and 1.9E6 psi) | L/180 < | ~ 19'0" for
12" spacing | 18'10" for
12" spacing | | P _f =40
or
P _g =40 | Doug Fir-Larch
(North) | Select Structural (2065 and 1.9E6 psi) | L/240 | ~ 13' 5" for
24" spacing | 13' 7" for
24" spacing | | P _f =40
or
P _g =40 | Hem-Fir
(North) | No. 2
(1585 and 1.6E6 psi) | L/180 | ~ 14' 6" for
16" spacing
(16'9" for 12") | 14' 5" for
16" spacing
(16'8" for 12") | | P _f =40
or
P _g =40 | Hem-Fir
(North) | No. 2
(1585 and 1.6E6 psi) | L/240 | 14' 6" for
16" spacing
(16'3" for 12") | ~ 14' 5" for
16" spacing
(16'2" for 12") | ^{1.} P_f per the 6th and P_g per the 7th ...6th and 7th produce same spans for these examples ^{2.} As calculated by the AF&PA Rafter Span Calculator ### What if it was 30* and is now 40 or 50 *Tyngsborough for example | | Snow
Load | Species | Grade | Defl | Allowable
Clear Span ¹
(D.L. = 10 psf) | | | | |-------------------------------|--------------------|-----------------------------------|-------------------------------------|----------------|---|--|--|--| | Was in 6th | P _g =30 | Doug Fir-Larch (North) | No. 2 | L/180 | 14′ 11″ | | | | | Was in 7 th | P _g =55 | Doug Fir-Larch (North) | No. 2 | L/180 | 11' 8"
(14' 9" Select Structural) | | | | | | P _g =40 | Doug Fir-Larch (North) | No. 2 | L/180 | 13′ 4″ | | | | | Effective | P _g =50 | Doug Fir-Larch (North) | No. 2 | L/180 | 12' 2" | | | | | Jan. 1, 2008 | g | Doug Fir-Larch (North)
Hem-Fir | Select Structural Select Structural | L/180
L/180 | 15' 4"
15' 0" | | | | | Can do it with a better grade | | | | | | | | | ...and span & spacing have to stay at about 15 feet & 16"?! 1. As calculated by the AF&PA Rafter Span Calculator